The Convex Feasibility Problem in Image Recovery∗

نویسنده

  • P. L. Combettes
چکیده

2 Mathematical Foundations 11 2.1 General Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Geometrical Properties of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Strong and Weak Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Convex Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 Distance to a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.2 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.3 Relaxed Convex Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ∗To appear in: Advances in Imaging and Electron Physics, Vol. 95, pp. 155-270. New York: Academic Press, 1996. ∗This work was supported by the National Science Foundation under grant MIP-9308609.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility of detecting and localizing radioactive source using image processing and computational geometry algorithms

We consider the problem of finding the localization of radioactive source by using data from a digital camera. In other words, the camera could help us to detect the direction of radioactive rays radiation. Therefore, the outcome could be used to command a robot to move toward the true direction to achieve the source. The process of camera data is performed by using image processing and computa...

متن کامل

Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback-Leibler Distance Minimization

Problems in signal detection and image recovery can sometimes be formulated as a convex feasibility problem (CFP) of finding a vector in the intersection of a finite family of closed convex sets. Algorithms for this purpose typically employ orthogonal or generalized projections onto the individual convex sets. The simultaneous multiprojection algorithm of Censor and Elfving for solving the CFP,...

متن کامل

Solving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms

Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called  $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...

متن کامل

Applications of Fixed-Point and Optimization Methods to the Multiple-Set Split Feasibility Problem

The multiple-set split feasibility problem requires finding a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be amodel for many inverse problemswhere constraints are imposed on the solutions in the domain of a linear operator as well as in the operat...

متن کامل

The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising

The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011